C. anagyroides H. B. and K.

Stem bark. Apiin (from EtOAc fraction, m.p., R_f and hydrolysis by 10% H₂SO₄ to apigenin, glucose and apiose).

C. juncea L.

Seeds. Apigenin-7-glucuronide and apigenin-7,4'-O-di-glucoside (from EtOAc fraction, R_f).

Acknowledgement—We thank the Principal, J.I.P.M.E.R., for kind encouragement.

SHORT COMMUNICATION

CHLOROGENIN AND KAEMPFEROL GLYCOSIDES FROM THE FLOWERS OF AGAVE AMERICANA

S. SANKARA SUBRAMANIAN and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 3 April 1970)

Abstract—Chlorogenin was isolated in a yield of 0.5% from the fresh flowers of Agave americana. The flavonol glycosides were identified as kaempferol-3-glucoside and kaempferol-3-rutinoside.

Plant. Agave americana L.—Amaryllidaceae.

Source. Pondicherry.

Uses. Medicinal.1,2

Previous work. Hecogenin from leaves; 2,3 work on sister species.4

Present work. Examination of flowers.

Fresh flowers extracted with hot ethanol (95%) under reflux, aq. concentrate shaken and layered with an equal volume of benzene and kept in an ice-chest for 2 weeks. The colourless solid separated at the interphase on crystallization thrice from MeOH yielded chlorogenin, 5 $C_{27}H_{44}O_4$, m.p. 272–274°, $[\alpha]_D^{28} - 51\cdot2^{\circ}$ (py); diacetyl, m.p. 154–155°, $[\alpha]_D^{28} - 36\cdot5^{\circ}$; dibenzoyl, m.p. 200–203°, $[\alpha]_D^{28} - 9\cdot8^{\circ}$. Benzene concentrate yielded a small quantity of the same solid (total yield, $0\cdot5^{\circ}$ %). No hecogenin could be identified. Ether extract of the aq. alc. concentrate yielded small quantity of kaempferol (R_f and co-chromatography). EtOAc extract yielded two glycosides of kaempferol (separated by preparative PC) identified as kaempferol-3-glucoside and kaempferol-3-rutinoside (m.p., R_f , acid hydrolysis and co-chromatography with authentic samples) (total yield of flavonols, 0.03° %).

Acknowledgement-Our thanks are due to the Principal, J.I.P.M.E.R., for encouragement.

¹ R. N. CHOPRA, I. C. CHOPRA, K. L. HANDA and L. D. KAPUR, *Chopra's Indigenous Drugs of India*, p. 577, U. N. Dhur, Calcutta (1958).

² J. M. WATT and M. G. Breyer-Brandwijk, *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, p. 19, E. & S. Livingstone, London (1962).

³ H. SINGH and W. PEREIRA, JR., Indian J. Chem. 2, 297 (1964).

⁴ K. Paech and M. V. Tracey, *Modern Methods of Plant Analysis*, Vol. III, pp. 191-200, Springer-Verlag, Berlin (1955).

⁵ G. HARRIS, Dictionary of Organic Compounds, Vol. III, p. 629, Eyre & Spottiswoode, London (1965).